Tree Graphs and **Orthogonal Spanning Tree** Decompositions James Mahoney Dissertation Adviser: Dr. John Caughman Portland State University 5-5-2016

Acknowledgements

- Dr. John Caughman, Chair
- Committee members:
 - Dr. Nirupama Bulusu
 - Dr. Derek Garton
 - Dr. Paul Latiolais
 - Dr. Joyce O'Halloran
- PSU Math Department, Enneking Fellowship Comm.
- Friends and Family

Overview

- 1. Introduction
- 2. Background
- 3. The Tree Graph Function and Parameters
- **4**. Properties of Tree Graphs
- 5. Trees and Matchings in Complete Graphs

Introduction

- Tree graphs first introduced by Cummins in 1966
- ~20 major papers published since then
- No one has systematically constructed them before
- My two years of research builds on data from dozens of examples

Overview

1. Introduction

- 2. Background
- 3. The Tree Graph Function and Parameters
- 4. Properties of Tree Graphs
- 5. Trees and Matchings in Complete Graphs

Graphs and Spanning Trees

- Graphs have *vertices* and *edges*
- Trees are connected graphs with no cycles
- Spanning trees have the same vertices as the original graph
- If a graph has n vertices then a spanning tree will have
 n 1 edges

Tree Graphs

• Let *G* be a graph. The *tree graph* of *G*, *T*(*G*), has vertices which are the spanning trees of *G*, where two vertices are adjacent if and only if you can change from one to the other by moving exactly one edge.

Example: *C*₄

Example: C₄

Example: *C*₄

 $T(C_4) = K_4$

Overview

- 1. Introduction
- 2. Background
- 3. The Tree Graph Function and Parameters
- **4**. Properties of Tree Graphs
- 5. Trees and Matchings in Complete Graphs

Tree Graph Function & Parameters

• Thm (Liu, 1992):

$$\kappa(T(G)) = \kappa'(T(G)) = \delta(T(G))$$

• Tree graphs are as connected as possible hard to break apart by removing vertices or edges

Graphs with Cut Vertices

- Let *G* and *H* be graphs and let *G* ⊙ *H* be a graph that joins a vertex in *G* with a vertex in *H*.
- Thm: $T(G \odot H) \cong T(G) \Box T(H)$.
 - Tree graphs of joined graphs are the product of the tree graphs of the pieces

Realizing Tree Graphs

- Given T(G), can we find a graph H such that $T(H) \cong T(G)$?
- What is the pre-image of a tree graph?

Isomorphic Tree Graphs

- These pairs of graphs are not isomorphic, but their tree graphs are.
- The starting graphs are *isoparic*: they have the same number of vertices and same number of edges but are not isomorphic.

Isomorphic Tree Graphs

- These pairs of graphs are not isomorphic, but their tree graphs are.
- The starting graphs are *isoparic*: they have the same number of vertices and same number of edges but are not isomorphic.

Realizing Tree Graphs

• These two graphs are isoparic and their tree graphs are isoparic (both have 64 vertices and 368 edges).

Isomorphic Tree Graphs

- Is it ever the case that $G \cong H$ but $T(G) \cong T(H)$?
- **Thm**: If *G* is 3-connected and planar, $T(G) \cong T(G^*)$. Planar duals give isomorphic tree graphs.

Tree Graph Function

			Tree Graphs			
	Starting Graphs		Isoparic	Isomorphic	Neither	
		Isoparic			$\bigoplus \triangle$	
		Isomorphic	Never	Always	Never	
		Neither	?	Non planar duals?	Default	

Overview

- 1. Introduction
- 2. Background
- 3. The Tree Graph Function and Parameters
- 4. Properties of Tree Graphs
- 5. Trees and Matchings in Complete Graphs

Properties of Tree Graphs

• Thm (Cummins, 1966):

T(G) is hamiltonian for any graph G

• There is a cycle through all of the vertices

Symmetry of Tree Graphs

- An *automorphism* of a graph *G* is a permutation of the vertices that respects adjacency. The set of all automorphisms of *G* forms a group under composition, *Aut(G)*.
- The *glory* of a graph *G*, *g*(*G*), is the size of its automorphism group. *g*(*G*) = |*Aut*(*G*)|.
- g(G) has been large for most of the small graphs studied so far. 1 2 3 2

Aut(T(G))

- Thm: Aut(G) is a subgroup of Aut(T(G)).
 - The symmetries of the input are mirrored in the symmetries of the output.
 - Example: $Aut(K_4 e) \cong V_4$ while $Aut(T(K_4 e)) \cong D_8$, the symmetries of the square.

Summary of Proof

- Every graph automorphism σ of G induces a tree graph automorphism ϕ_{σ} of T(G)
- If ϕ_{σ} fixes all vertices of T(G), then σ fixes all cycle edges of G
- In a 2-connected graph, all edges are cycle edges
- If all edges of G are fixed by σ , all vertices are fixed also
- Therefore map that takes σ to ϕ_{σ} is an injective homomorphism

Automorphism Size Examples

Graph G	$g(\boldsymbol{T}(\boldsymbol{G}))$	g (G)	Notes
	8	4	D_8 and V_4
<i>K</i> _{3,2}	48	12	$S_4 \times S_2$ and $S_3 \times S_2$
K_5	120	120	S_5 and S_5
	28800	4	? and <i>V</i> ₄
	288	3	? and \mathbb{Z}_3
	12	1	<i>D</i> ₁₂ and trivial
C_4	24	8	S ₄ and D ₈

Planarity

- **Thm**: The tree graphs of the diamond and the butterfly are nonplanar. (Contain K_5 and $K_{3,3}$ minors, respectively.)
- Thm: T(G) is nonplanar unless $G \cong C_3, C_4$.

Introduction – Background – T(G) function – Properties

Cannot draw them flat without lines crossing.

Diamond

Butterfly

$$T(H) \leq T(G)$$
$$| \qquad |$$
$$H \subseteq G$$

Matchings

Decomposition

- Thm: The edges of *T*(*G*) can be decomposed into cliques of size at least three such that each vertex is in exactly *m n* + 1 cliques.
 - Can break apart graph into pieces that are completely connected, where each vertex is in same number of pieces.
 - Can be used to predict number of edges in T(G).

Decomposition

$$m = 3$$

 $n = 4$
 $m - n + 1 = 2$

Additional Families

- Let $P_{n,k}$ be the graph where two vertices are joined by n disjoint paths of edge length k.
- Thm: $T(P_{n,k})$ is (n-1)(2k-1)-regular.
- **Conj**: $T(P_{n,k})$ is integral (with easily-understood eigenvalues) and vertex transitive.
- $T(P_{n,k})$ could be a new infinite family (with two parameters) of regular integral graphs.
 - These are *really* nice graphs

 $T(P_{3,2})$

 $P_{3, 4}$

Overview

- 1. Introduction
- 2. Background
- 3. The Tree Graph Function and Parameters
- 4. Properties of Tree Graphs
- 5. Trees and Matchings in Complete Graphs

Def. A <u>perfect matching</u> is a set of disjoint edges that covers all of the vertices in a graph. $P_{erf_{ect}!}$

Doyle Graph

Coxeter Graph

Coloring the edges of a graph

A <u>coloring</u> is an assignment of colors (numbers) to the edges of a graph

A proper coloring has distinct colors at each vertex.

Notice that the color classes for a proper coloring must be disjoint sets of edges (= matchings!)

1-factorizations of K_{2n}

Lots of not-so-nice ones...
 In fact, of the 396 different rainbow colorings of K₁₀, most look 'random'

• Some <u>very</u> nice ones...

The most commonly known rainbow coloring of K_{2n} is called GK_{2n}

The *GK*_{2n} 1-factorization

Orthogonal spanning trees

For any 1-factorization of K_{2n} , an <u>orthogonal spanning</u> <u>tree</u> has no 2 edges of the same color! (2n - 1 different colors)

Brualdi-Hollingsworth Theorem

Thm. (1996) Any 1-factorization of K_{2n} has <u>at least 2</u> disjoint orthogonal spanning trees.

Brualdi-Hollingsworth Conjecture

Conj. (1996) Any 1-factorization of K_{2n} has <u>a full set of</u> n disjoint orthogonal spanning trees!

A first step

Thm. (Krussel, Marshall, and Verall, 2000) Any 1-factorization of K_{2n} , has <u>at least 3</u> disjoint orthogonal spanning trees!

Another step

Thm. (KMV, 2000) If 2n - 1 is a prime of the form 8m + 7 then GK_{2n} has a full set of n disjoint orthogonal spanning trees.

An idea to build upon

- Since GK_{2n} is so nice, the symmetry should help us build nice trees, too.
- Specifically, the colorings rotate around a single vertex.
 So perhaps the trees should, too.

Rotational 1-factorizations

Def. In a <u>rotational 1-factorization</u>, each M_i , can be obtained from M_1 by rotation.

Rotational spanning trees

Def. In a <u>rotational set of spanning trees</u> all (but one) of the trees T_i , can be obtained from T_1 by rotation.

Proof of concept

Thm. (Caughman, Krussel) For every n, GK_{2n} has a full rotational set of n disjoint orthogonal spanning trees.

New 1-Factorization

• Called the half family, HK_{2n}

Proposed Extension

Conj. Every rotational 1-factorization of K_{2n} has a full rotational set of orthogonal spanning trees.

Thanks!

• Any questions?

