Tree Graphs and

Orthogonal Spanning Tree Decompositions

James Mahoney
Dissertation Adviser: Dr. John Caughman
Portland State University
5-5-2016

Acknowledgements

- Dr. John Caughman, Chair
- Committee members:
- Dr. Nirupama Bulusu
- Dr. Derek Garton
- Dr. Paul Latiolais
- Dr. Joyce O'Halloran
- PSU Math Department, Enneking Fellowship Comm.
- Friends and Family

Overview

1. Introduction
2. Background
3. The Tree Graph Function and Parameters
4. Properties of Tree Graphs
5. Trees and Matchings in Complete Graphs

Introduction

- Tree graphs first introduced by Cummins in 1966
- ~20 major papers published since then
- No one has systematically constructed them before
- My two years of research builds on data from dozens of examples

(1)

(3)

(2)

(4)

Overview

1. Introduction
2. Background
3. The Tree Graph Function and Parameters
4. Properties of Tree Graphs
5. Trees and Matchings in Complete Graphs

Graphs and Spanning Trees

- Graphs have vertices and edges
- Trees are connected graphs with no cycles
- Spanning trees have the same vertices as the original graph
- If a graph has n vertices then a spanning tree will have $n-1$ edges

G

T

Tree Graphs

- Let G be a graph. The tree graph of $G, T(G)$, has vertices which are the spanning trees of G, where two vertices are adjacent if and only if you can change from one to the other by moving exactly one edge.

Example: C_{4}

Example: C_{4}

Example: C_{4}

$$
T\left(C_{4}\right)=K_{4}
$$

Overview

1. Introduction
2. Background
3. The Tree Graph Function and Parameters
4. Properties of Tree Graphs
5. Trees and Matchings in Complete Graphs

Tree Graph Function \& Parameters

- Thm (Liu, 1992):

$$
\kappa(T(G))=\kappa^{\prime}(T(G))=\delta(T(G))
$$

- Tree graphs are as connected as possible hard to break apart by removing vertices or edges

Graphs with Cut Vertices

- Let G and H be graphs and let $G \odot H$ be a graph that joins a vertex in G with a vertex in H.
- Thm: $T(G \odot H) \cong T(G) \square T(H)$.
- Tree graphs of joined graphs are the product of the tree graphs of the pieces

Realizing Tree Graphs

- Given $T(G)$, can we find a graph H such that $T(H) \cong T(G)$?
- What is the pre-image of a tree graph?

Isomorphic Tree Graphs

- These pairs of graphs are not isomorphic, but their tree graphs are.
- The starting graphs are isoparic: they have the same number of vertices and same number of edges but are not isomorphic.

Isomorphic Tree Graphs

- These pairs of graphs are not isomorphic, but their tree graphs are.
- The starting graphs are isoparic: they have the same number of vertices and same number of edges but are not isomorphic.

Realizing Tree Graphs

- These two graphs are isoparic and their tree graphs are isoparic (both have 64 vertices and 368 edges).

Isomorphic Tree Graphs

- Is it ever the case that $G \not \approx H$ but $T(G) \cong T(H)$?
- Thm: If G is 3 -connected and planar, $T(G) \cong T\left(G^{*}\right)$. Planar duals give isomorphic tree graphs.

Tree Graph Function

Tree Graphs

Isoparic

Starting
Graphs

Isomorphic
Neither

Overview

1. Introduction
2. Background
3. The Tree Graph Function and Parameters
4. Properties of Tree Graphs
5. Trees and Matchings in Complete Graphs

Properties of Tree Graphs

- Thm (Cummins, 1966):
$T(G)$ is hamiltonian for any graph G
- There is a cycle through all of the vertices

Symmetry of Tree Graphs

- An automorphism of a graph G is a permutation of the vertices that respects adjacency. The set of all automorphisms of G forms a group under composition, Aut(G).
- The glory of a graph $G, g(G)$, is the size of its automorphism group. $g(G)=|A u t(G)|$.
- $g(G)$ has been large for most of the small graphs studied so far.

Aut ($T(G)$)

- Thm: $\operatorname{Aut}(G)$ is a subgroup of $\operatorname{Aut}(T(G))$.
- The symmetries of the input are mirrored in the symmetries of the output.
- Example: $\operatorname{Aut}\left(K_{4}-e\right) \cong V_{4}$ while $\operatorname{Aut}\left(T\left(K_{4}-e\right)\right) \cong D_{8}$, the symmetries of the square.

Summary of Proof

- Every graph automorphism σ of G induces a tree graph automorphism ϕ_{σ} of $T(G)$
- If ϕ_{σ} fixes all vertices of $T(G)$, then σ fixes all cycle edges of G
- In a 2-connected graph, all edges are cycle edges
- If all edges of G are fixed by σ, all vertices are fixed also
- Therefore map that takes σ to ϕ_{σ} is an injective homomorphism

Automorphism Size Examples

| Graph G | $g(T(G))$ | $g(G)$ | Notes |
| :--- | :---: | :---: | :--- | :--- |
| | 8 | 4 | D_{8} and V_{4} |
| | 28800 | 12 | $S_{4} \times S_{2}$ and $S_{3} \times S_{2}$ |

Planarity

- Thm: The tree graphs of the diamond and the butterfly are nonplanar. (Contain K_{5} and $K_{3,3}$ minors, respectively.)
- Thm: $T(G)$ is nonplanar unless $G \cong C_{3}, C_{4}$.
- Cannot draw them flat without lines crossing.

Diamond

Decomposition

- Thm: The edges of $T(G)$ can be decomposed into cliques of size at least three such that each vertex is in exactly $m-n+1$ cliques.
- Can break apart graph into pieces that are completely connected, where each vertex is in same number of pieces.
- Can be used to predict number of edges in $T(G)$.

Decomposition

$$
\begin{aligned}
& m=5 \\
& n=4 \\
& m-n+1=2
\end{aligned}
$$

Additional Families

- Let $P_{n, k}$ be the graph where two vertices are joined by n disjoint paths of edge length k.
- Thm: $T\left(P_{n, k}\right)$ is $(n-1)(2 k-1)$-regular.
- Conj: $T\left(P_{n, k}\right)$ is integral (with easily-understood eigenvalues) and vertex transitive.
- $T\left(P_{n, k}\right)$ could be a new infinite family (with two parameters) of regular integral graphs.
- These are really nice graphs

Overview

1. Introduction
2. Background
3. The Tree Graph Function and Parameters
4. Properties of Tree Graphs
5. Trees and Matchings in Complete Graphs

Def. A perfect matching is a set of disjoint edges that covers all of the vertices in a graph.
Nearly Perfect!

Doyle Graph

Coloring the edges of a graph

1-factorizations of $K_{2 n}$

- Lots of not-so-nice ones...

In fact, of the 396 different rainbow colorings of K_{10}, most look 'random'

- Some very nice ones...

The most commonly known rainbow coloring of $K_{2 n}$ is called $G K_{2 n}$

The $G K_{2 n}$ 1-factorization

Orthogonal spanning trees

For any 1-factorization of $K_{2 n}$, an orthogonal spanning tree has no 2 edges of the same color!
($2 n-1$ different colors)

Brualdi-Hollingsworth Theorem

Thm. (1996) Any 1-factorization of $K_{2 n}$ has at least 2 disjoint orthogonal spanning trees.

Brualdi-Hollingsworth Conjecture

Conj. (1996) Any 1-factorization of $K_{2 n}$ has a full set of n disjoint orthogonal spanning trees!

A first step

Thm. (Krussel, Marshall, and Verall, 2000)
Any 1-factorization of $K_{2 n}$, has at least 3 disjoint orthogonal spanning trees!

Another step

Thm. (KMV, 2000) If $2 n-1$ is a prime of the form $8 m+7$ then $G K_{2 n}$ has a full set of n disjoint orthogonal spanning trees.

An idea to build upon

- Since $G K_{2 n}$ is so nice, the symmetry should help us build nice trees, too.
- Specifically, the colorings rotate around a single vertex. So perhaps the trees should, too.

Rotational 1-factorizations

Def. In a rotational 1-factorization, each M_{i}, can be obtained from M_{1} by rotation.

W_{28}

Rotational spanning trees

Def. In a rotational set of spanning trees all (but one) of the trees T_{i}, can be obtained from T_{1} by rotation.

Proof of concept

Thm. (Caughman, Krussel) For every $n, G K_{2 n}$ has a full rotational set of n disjoint orthogonal spanning trees.

New 1-Factorization

- Called the halffamily, $H K_{2 n}$

Proposed Extension

Conj. Every rotational 1-factorization of $K_{2 n}$ has a full rotational set of orthogonal spanning trees.

Thanks!

- Any questions?
$T\left(P_{4,2}\right)$

