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Introduction 
 Tree graphs first introduced by Cummins in 1966 

 ~20 major papers published since then 

 No one has systematically constructed them before 

 My two years of research builds on data from dozens of 
examples 

Introduction    –    Background    –    T(G) function    –    Properties    -    Matchings 
 



Overview 
1. Introduction 

2. Background 

3. The Tree Graph Function and Parameters 

4. Properties of Tree Graphs 

5. Trees and Matchings in Complete Graphs 

Introduction    –    Background    –    T(G) function    –    Properties    -    Matchings 
 



Graphs and Spanning Trees 
 Graphs have vertices and edges 

 Trees are connected graphs with no cycles 

 Spanning trees have the same vertices as the original graph 

 If a graph has 𝑛 vertices then a spanning tree will have 
𝑛 − 1 edges 
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Tree Graphs 
 Let 𝐺 be a graph. The tree graph of 𝐺, 𝑇(𝐺), has 

vertices which are the spanning trees of 𝐺, where two 
vertices are adjacent if and only if you can change from 
one to the other by moving exactly one edge. 
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Example: 𝐶4 
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Example: 𝐶4 

𝑇 𝐶4 = 𝐾4 
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Tree Graph Function & Parameters 
 

 Thm (Liu, 1992):  

𝜅 𝑇 𝐺 = 𝜅′ 𝑇 𝐺 = 𝛿(𝑇 𝐺 ) 

 Tree graphs are as connected as possible -  
hard to break apart by removing vertices or edges 
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Graphs with Cut Vertices 
 Let 𝐺 and 𝐻 be graphs and let 𝐺 ⊙𝐻 be a graph that 

joins a vertex in 𝐺 with a vertex in 𝐻. 

 Thm: 𝑇 𝐺 ⊙𝐻 ≅ 𝑇(𝐺)□𝑇(𝐻). 

 Tree graphs of joined graphs are the product of the tree 
graphs of the pieces 
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Realizing Tree Graphs 
 Given 𝑇(𝐺), can we find a graph 𝐻 such that 
𝑇 𝐻 ≅ 𝑇(𝐺)? 

 What is the pre-image of a tree graph? 

Introduction    –    Background    –    T(G) function    –    Properties    -    Matchings 
 

Where do I come from? 



Isomorphic Tree Graphs 
 These pairs of graphs are not isomorphic, but their 

tree graphs are. 

 The starting graphs are isoparic: they have the same 
number of vertices and same number of edges but are 
not isomorphic. 
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Realizing Tree Graphs 
 These two graphs are isoparic and their tree graphs are 

isoparic (both have 64 vertices and 368 edges). 
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Isomorphic Tree Graphs 
 Is it ever the case that 𝐺 ≇ 𝐻 but 𝑇 𝐺 ≅ 𝑇(𝐻)? 

 Thm: If 𝐺 is 3-connected and planar, 𝑇 𝐺 ≅ 𝑇(𝐺∗). 
Planar duals give isomorphic tree graphs. 
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Tree Graph Function 
Tree Graphs 

Starting 
Graphs 

Isoparic Isomorphic Neither 

Isoparic 

Isomorphic Never Always Never 

Neither ? 

 
 
 

Non planar 
duals? 

Default 
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Properties of Tree Graphs 
 Thm (Cummins, 1966):  

𝑇(𝐺) is hamiltonian for any graph 𝐺  

 There is a cycle through all of the vertices 
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Symmetry of Tree Graphs 
 An automorphism of a graph 𝐺 is a permutation of the 

vertices that respects adjacency. The set of all 
automorphisms of 𝐺 forms a group under composition, 
𝐴𝑢𝑡(𝐺).  

 The glory of a graph 𝐺, 𝑔(𝐺), is the size of its 
automorphism group. 𝑔 𝐺 = |𝐴𝑢𝑡 𝐺 |. 

 𝑔(𝐺) has been large for most of the small graphs studied 
so far.  
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𝐴𝑢𝑡(𝑇 𝐺 ) 
 Thm: 𝐴𝑢𝑡(𝐺) is a subgroup of 𝐴𝑢𝑡(𝑇 𝐺 ).  

 The symmetries of the input are mirrored in the symmetries 
of the output. 

 Example: 𝐴𝑢𝑡 𝐾4 − 𝑒 ≅ 𝑉4 while 𝐴𝑢𝑡 𝑇 𝐾4 − 𝑒 ≅ 𝐷8,  

the symmetries of the square. 
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Summary of Proof 
 Every graph automorphism 𝜎 of 𝐺 induces a tree graph 

automorphism 𝜙𝜎 of 𝑇(𝐺)  

 If 𝜙𝜎 fixes all vertices of 𝑇(𝐺), then 𝜎 fixes all cycle edges 
of 𝐺 

 In a 2-connected graph, all edges are cycle edges 

 If all edges of 𝐺 are fixed by 𝜎, all vertices are fixed also 

 Therefore map that takes 𝜎 to 𝜙𝜎 is an injective 
homomorphism 
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𝐴𝑢𝑡(𝐺) 𝐴𝑢𝑡(𝑇 𝐺 ) 



Automorphism Size Examples 
Graph 𝐺 g 𝑻 𝑮  𝒈 𝑮  Notes 

 
 

8 4 𝐷8 and 𝑉4 

𝐾3,2 48 12 𝑆4 × 𝑆2 and 𝑆3 × 𝑆2 

𝐾5 120 120 𝑆5 and 𝑆5 

 
 

28800 4 ? and 𝑉4 

 
 
 

288 3 ? and ℤ3 

 
 
 

12 1 𝐷12 and trivial 

𝐶4 24 8 𝑆4 and 𝐷8 
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Planarity 
 Thm: The tree graphs of the diamond and the butterfly 

are nonplanar. (Contain 𝐾5 and 𝐾3,3 minors, respectively.) 

 Thm: 𝑇(𝐺) is nonplanar unless 𝐺 ≅ 𝐶3, 𝐶4.  

 Cannot draw them flat without lines crossing. 

Diamond Butterfly 
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𝑇 𝐻 ≤ 𝑇 𝐺  
 
 

𝐻    ⊑    𝐺 



Decomposition 
 Thm: The edges of 𝑇(𝐺) can be decomposed into 

cliques of size at least three such that each vertex is in 
exactly 𝑚− 𝑛 + 1 cliques.  

 Can break apart graph into pieces that are completely 
connected, where each vertex is in same number of pieces. 

 Can be used to predict number of edges in 𝑇(𝐺). 
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Decomposition 

𝑚 = 5 
𝑛 = 4 
𝑚 − 𝑛 + 1 = 2 
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Additional Families 
 Let 𝑃𝑛,𝑘 be the graph where two vertices are joined by 
𝑛 disjoint paths of edge length 𝑘.  

 Thm: 𝑇(𝑃𝑛,𝑘) is (𝑛 − 1)(2𝑘 − 1)-regular. 

 Conj: 𝑇(𝑃𝑛,𝑘) is integral (with easily-understood 
eigenvalues) and vertex transitive.  

 𝑇(𝑃𝑛,𝑘) could be a new infinite family (with two 
parameters) of regular integral graphs. 

 These are really nice graphs 

𝑃3,4 
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𝑇(𝑃3,2) 
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Doyle Graph Coxeter Graph 

Def.  A perfect matching is a set of disjoint edges that 
covers all of the vertices in a graph. 
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Coloring the edges of a graph 

A coloring is an assignment of colors  
(numbers) to the edges of a graph 

A proper coloring  has distinct 
colors at each vertex. 

Notice that the color classes for a proper 
coloring must  be disjoint sets of edges   
(= matchings!) 

1 

5 

6 

4 

5 

2 

3 

2 
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1-factorizations of 𝐾2𝑛 

 Lots of not-so-nice ones…  

 In fact, of the 396 different rainbow colorings of 𝐾10, 
most look ‘random’ 

 

 Some very nice ones… 

 The most commonly known rainbow coloring of 𝐾2𝑛 is 
called 𝐺𝐾2𝑛 
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The 𝐺𝐾2𝑛 1-factorization 
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Orthogonal spanning trees 
For any 1-factorization of 𝐾2𝑛, an orthogonal spanning 

tree has no 2 edges of the same color!  
(2𝑛 − 1 different colors)  
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Brualdi-Hollingsworth Theorem 
Thm. (1996) Any 1-factorization of 𝐾2𝑛 has at least 2 

disjoint orthogonal spanning trees.   
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Brualdi-Hollingsworth Conjecture 

Conj. (1996) Any 1-factorization of 𝐾2𝑛 has a full set of 𝑛 
disjoint orthogonal spanning trees! 
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A first step 

Thm. (Krussel, Marshall, and Verall, 2000)  

Any 1-factorization of 𝐾2𝑛, has at least 3 disjoint orthogonal 
spanning trees! 
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Thm. (KMV, 2000) If  2𝑛 − 1 is a prime of the form 
8𝑚 + 7  then 𝐺𝐾2𝑛  has a full set of 𝑛 disjoint orthogonal 
spanning trees. 

 

 

Another step 
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 Since 𝐺𝐾2𝑛 is so nice, the symmetry should help us 
build nice trees, too. 

 

 Specifically, the colorings rotate around a single vertex. 
So perhaps the trees should, too. 

An idea to build upon 
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WK28 

Rotational 1-factorizations 

Def. In a rotational 1-factorization, each 𝑀𝑖, can be 
obtained from 𝑀1 by rotation. 
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Rotational spanning trees 

Def. In a rotational set of spanning trees all (but one) of 
the trees 𝑇𝑖, can be obtained from 𝑇1 by rotation. 
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Proof of concept 

Thm. (Caughman, Krussel) For every 𝑛, 𝐺𝐾2𝑛 has a full 
rotational set of 𝑛 disjoint orthogonal spanning trees. 
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New 1-Factorization 
 Called the half family, 𝐻𝐾2𝑛 
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Proposed Extension 

Conj. Every rotational 1-factorization of 𝐾2𝑛  has a full 
rotational set of orthogonal spanning trees. 
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Thanks! 
 Any questions? 

𝑇(𝑃4,2) 


